Kernel Hebbian Algorithm for Iterative Kernel Principal Component Analysis

نویسندگان

  • Kwang In Kim
  • Matthias O. Franz
  • Bernhard Schölkopf
چکیده

A new method for performing a kernel principal component analysis is proposed. By kernelizing the generalized Hebbian algorithm, one can iteratively estimate the principal components in a reproducing kernel Hilbert space with only linear order memory complexity. The derivation of the method and preliminary applications in image hyperresolution are presented. In addition, we discuss the extension of the method to the online learning of kernel principal components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Hebbian Algorithm for Single-Frame Super-Resolution

This paper presents a method for single-frame image superresolution using an unsupervised learning technique. The required prior knowledge about the high-resolution images is obtained from Kernel Principal Component Analysis (KPCA). The original form of KPCA, however, can be only applied to strongly restricted image classes due to the limited number of training examples that can be processed. W...

متن کامل

Image Modeling based on Kernel Principal Component Analysis

This article presents a method for estimating a generative image model based on Kernel Principal Component Analysis (KPCA). In contrast to other patch-based modeling approaches such as PCA, ICA or sparse coding, KPCA is capable of capturing nonlinear interactions between the basis elements of the image. The original form of KPCA, however, can be only applied to strongly restricted image classes...

متن کامل

Fast Iterative Kernel PCA

We introduce two methods to improve convergence of the Kernel Hebbian Algorithm (KHA) for iterative kernel PCA. KHA has a scalar gain parameter which is either held constant or decreased as 1/t, leading to slow convergence. Our KHA/et algorithm accelerates KHA by incorporating the reciprocal of the current estimated eigenvalues as a gain vector. We then derive and apply Stochastic MetaDescent (...

متن کامل

Fast Iterative Kernel Principal Component Analysis

We develop gain adaptation methods that improve convergence of the Kernel Hebbian Algorithm (KHA) for iterative kernel PCA (Kim et al., 2005). KHA has a scalar gain parameter which is either held constant or decreased according to a predetermined annealing schedule, leading to slow convergence. We accelerate it by incorporating the reciprocal of the current estimated eigenvalues as part of a ga...

متن کامل

Improved fast Gauss transform User manual

In most kernel based machine learning algorithms and non-parametric statistics the key computational task is to compute a linear combination of local kernel functions centered on the training data, i.e., f(x) = ∑N i=1 qik(x, xi), which is the discrete Gauss transform for the Gaussian kernel. f is the regression/classification function in case of regularized least squares, Gaussian process regre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003